Physics 604
Problem Set 5
Due Nov. 18, 2010

1) a) First we need to find the appropriate expressions for the charge density. The full volume
integral must yield +q for each charge. Therefore
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by a problem in Arfken (3™ edition problem 12.5.3). Clearly M, and by implication also |, must
be odd, but otherwise, they are unrestricted except for the usual conditions. Note: Arfken’s sign

convention on Plynl\rfken(x) ( 1) pm

| Jackson ( );Jackson agrees with Abramowitz and Stegun, the

famous AMS-55. They all agree on the sign convention for Y, , which derives from the Condon

and Shortley phase conventions.

b) By performing the normalization integrals properly one obtains
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So the azimuthally symmetric moments are non-zero only for even |. Because the distribution

is azimuthally symmetrical, only m = 0 moments are non-zero by orthogonality of e"™ with the
constant function in ¢’ .

c) Clearly
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The dominant term at large radii is
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The expansion in the X — Yy plane is
o 20 < a |/2 a' 1)!!
[0)) - = .
(%) 4ﬂgor§ r Al 4;;50 Z r' Rl

d) Calculating with Coulomb’s Law in the X — Y plane
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which expands just as in c)
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2) a) The distribution is azimuthally symmetrical and so only m = 0 contributes. Next notice that
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The expressions are actually in scaled units, as discussed in part c).

b) In order to compute the total potential we’ll need a variety of indefinite integrals. You can look
them up or follow this table
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The total potential is
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where the division in the expression for the expansion coefficient accounts for the

normalization of the orthogonal set. Therefore
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3) a) The potential in each of the three regions will be called @, (1,60), @, (r,8),and® (r,0).

By the mid-term, for cylindrical geometry, for example
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The coefficients for region Il will be C , D, and region Ill will be E  (there can be no singularity at
the origin. The Sin & terms will be zero as we’re matching to —E, C0S @ at large radii, the

cylindrically symmetrical parts are zero because there is no net free charge. In the same manner
as the mid-term, only v = £1 are non-zero. The boundary conditions at I = @ yield
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The boundary conditions at I = b yield
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c) Inthelimit @ — 0 the coefficients become
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and the potential becomes
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To get the other solution, take the limit b — 00, Then
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the asymptotic field at large radii, one obtains
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This result is the same as the first part of this section with the roles of ¢, and & swapped and

b—a.

The main “trick” to this problem is to realize that if the electric field is totally radial, and the
same in the two regions, then the boundary conditions at the dielectric boundary are

automatically satisfied: the tangential E field is continuous by assumption, and the normal



D = ¢E is continuous automatically because it is zero on either side of the dielectric boundary.
Since all the boundary conditions are satisfied by a purely radial field, by the uniqueness
theorem, this must be THE solution. By Gauss’s Law applied to the displacement vector
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One could also use the general expansion for the potential in the region between the spheres,
assuming the z-axis is along the rotational symmetry direction of the problem. The potential in
the region between the spheres is in general
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where possible “leakage” of the field into or out of the dielectric could be handled by having
non-zero higher | values. Fortunately, the boundary conditions at F =a and r =b exclude
such a possibility! For example
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by orthogonality of B and the constant function. Likewise,
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These two conditions imply that A =B, =0 forl #0. Once one knows ®(r,0)= A +B, /T,

it is a short calculation to find the electric field as above.

b) D = E =Oinside the surface of the conducting shells. Therefore the “free” surface charge
density on the surface is given simply by the value of the displacement on the surface.
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On the surface of the sphere exposed to vacuum, the charge density is
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On the surface of the inner sphere exposed to the dielectric, the charge density is
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The “effective” charge density on the dielectric side is therefore
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just as on the vacuum surface. This charge yields the proper total electric field in the radial
direction.



